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Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803
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Length and time scales

Human

Mouse

D. melanogaster
C. elegans

Eukaryote

Cell sizes

Bacterium
Mitochondrion

Ribosome
Membrane thickness

Small molecules
Hydrogen bond

Body sizes

Wavelengths of

visible light

Molecules

Cell regulation

Molecules

Life

Human

Evolution

E. coli genes

Cicadian oscillation

Glycolytic osc. (yeast)
Cell cycle (E.coli)
Gene expression

Metabolism, signaling

LacZ production (RNA)

Translation (AA)
Transcription (nucleotide)

Protein-DNA binding

High—energy
transition state

Time
billion years
million years
year

day

hour

min

ms

s

ns

st

Length and time scales in biology. (Data from the BioNumbers database at bionumbers.hms.harvard.edu)
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Abstraction steps in modeling

(a) Biological system (b) Mental model (c) Model scheme
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Figure 1.2  Typical abstraction steps in mathematical modeling. (a) E. coli bacteria produce thousands of different proteins. If a specific
protein type is labeled with a fluorescent marker, cells glow under the microscope according to the concentration of this marker. (Courtesy of
M. Elowitz.) (b) In a simplified mental model, we assume that cells contain two enzymes of interest, X (red) and Y (blue), and that the molecules
[dots) can freely diffuse within the cell. All other substances are disregarded for the sake of simplicity. (c) The interactions between the two
protein types can be drawn in a wiring scheme: each protein can be produced or degraded (black arrows). In addition, we assume that proteins
of type X can increase the production of protein Y. (d) All individual processes to be considered are listed together with their rates a
loccurrence per time). The mathematical expressions for the rates are based on a simplified picture of the actual chemical processes. (e) The list
of processes can be translated into different sorts of dynamic models, in this case, deterministic rate equations for the protein concentrations x
and y. (f) By solving the model equations, predictions for the time-dependent concentrations can be obtained. If the predictions do not agree
with experimental data, this indicates that the model is wrong or too much simplified. In both cases, the model has to be refined.
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Linear chain

Input > X > Y > Z

A 4

Figure 1.8 The human brain handles

linear chains of causes and events very
well. In this simple pathway, an external
input is converted sequentially into X, Y, and
Z, which leaves the system. The conversion of
Xinto Y is catalyzed by an enzyme E. It is easy
to imagine that any increase in Input will
cause the levels of X, ¥, and Z to rise.
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Figure 1.9 Simulations with the system
in (1.1) confirm our intuition: X, Y, and
Z reflect changes in Input. For instance,
reducing Inputin (1.1) to 75% at time

10 (arrow) leads to permanent decreases
inX,Y, and Z.
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Linear chain with feedback

E¢—G&—TF
Input > X > Y > Z P

Figure 1.10 Even simple systems may

not allow us to make reliable predictions
regarding their responses to stimuli.
Here, the linear pathway from Figure 1.8 is
embedded into a functional loop consisting
of a transcription factor TF and a gene G that
codes for enzyme E. As described in the text,
the responses to changes in Input are no
longer obvious.
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Figure 1.10 Even simple systems may

not allow us to make reliable predictions
regarding their responses to stimuli.
Here, the linear pathway from Figure 1.8 is
embedded into a functional loop consisting
of a transcription factor TF and a gene G that
codes for enzyme E. As described in the text,
the responses to changes in Input are no
longer obvious.
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Figure 1.11 Simulation results
demonstrate that the looped system

in Figure 1.10 may exhibit drastically
different responses. If the effect of Zon TF
is very small, the response is essentially like
that in Figure 1.9 (results not shown). (A) If
the effect of Z on TF is relatively small, the
functional feedback loop causes the system
to go through damped oscillations before
assuming a new stable state. (B) For stronger
effects of Z on TF, the system response is a
persistent oscillation.
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